Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 105: 129752, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631541

RESUMEN

The misfolding and aggregation of α-Syn play a pivotal role in connecting diverse pathological pathways in Parkinson's disease (PD). Preserving α-Syn proteostasis and functionality by inhibiting its aggregation or disaggregating existing aggregates using suitable inhibitors represents a promising strategy for PD prevention and treatment. In this study, a series of benzothiazole-polyphenol hybrids was designed and synthesized. Three identified compounds exhibited notable inhibitory activities against α-Syn aggregation in vitro, with IC50 values in the low micromolar range. These inhibitors demonstrated sustained inhibitory effects throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation. Moreover, the compounds effectively disintegrated preformed α-Syn oligomers and fibers, potentially by binding to specific domains within the fibers, inducing fibril instability, collapse, and ultimately resulting in smaller-sized aggregates and monomers. These findings offer valuable insights into the therapeutic potential of polyphenol hybrids with 2-conjugated benzothiazole targeting α-Syn aggregation in the treatment of PD.


Asunto(s)
Benzotiazoles , Polifenoles , Agregado de Proteínas , alfa-Sinucleína , Benzotiazoles/química , Benzotiazoles/farmacología , Benzotiazoles/síntesis química , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/metabolismo , Polifenoles/química , Polifenoles/farmacología , Polifenoles/síntesis química , Humanos , Agregado de Proteínas/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo
2.
Eur J Med Chem ; 268: 116198, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368711

RESUMEN

α-Syn fibers, the primary cause and central element of Lewy bodies (LB), play a pivotal role in the development of Parkinson's disease (PD). This research aims to identify more potent inhibitors of α-Syn aggregation. A series of N-aryl-3-aryl-pyrazole-5-carboxamide derivatives were designed and synthesized for this purpose. Among them, four candidate compounds, combining pyrazole and polyphenol blocks, were identified through screening, demonstrating good inhibitory effects with IC50 values in the low micromolar range (1.25-4.29 µM). Two candidates exhibited high permeability through the blood-brain barrier. Mechanistic studies using various methods revealed that the candidates preferentially bind to the aggregation-prone domains-proNAC or NAC domains of α-Syn. This binding hinders the conformational transition from random coil/α-helix to ß-sheet, preserving α-Syn proteostasis. As a result, it interferes with α-Syn nuclei formation, prolongs the lag phase, decelerates the elongation phase, and ultimately impedes the formation of α-Syn fibrils. Additionally, the candidates demonstrated promising results in the disaggregation of preformed α-Syn fibers, potentially by binding to specific sites near the ß-sheet domain within fibers. This reduces fiber stability, causing rapid collapse and yielding smaller aggregates and monomers. Crucially, the candidate compounds exhibited significant inhibitory efficacy against α-Syn aggregation within nerve cells with low cytotoxicity. This resulted in a notable inhibition of the formation of LB-like α-Syn inclusions. These compounds show considerable promise as potential therapeutic agents for the prevention and treatment of PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Transporte Biológico
3.
Bioorg Med Chem Lett ; 99: 129618, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219887

RESUMEN

This study focuses on the discovery of new potential drugs for treating PD by targeting the aggregation of α-Syn. A series of hybrids combining Coumarin and phenolic acid were designed and synthesized. Four particularly promising compounds were identified, showing strong inhibitory effects with IC50 values ranging from low micromolar to submicromolar concentrations, as low as 0.63 µM. These compounds exhibited a higher binding affinity to α-Syn residues and effectively hindered the entire aggregation process, maintaining the proteostasis conformation of α-Syn and preventing the formation of ß-sheet aggregates. This approach holds significant promise for PD prevention. Additionally, these candidate compounds demonstrated the ability to break down preformed α-Syn oligomers and fibrils, resulting in the formation of smaller aggregates and monomers. Moreover, the candidate compounds showed impressive effectiveness in inhibiting α-Syn aggregation within nerve cells, thereby reducing the likelihood of α-Syn inclusion formation resembling Lewy bodies, which highlights their potential for treating PD.


Asunto(s)
Neuronas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Unión Proteica , Neuronas/metabolismo , Cumarinas/farmacología
4.
Bioorg Med Chem Lett ; 97: 129564, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000482

RESUMEN

The aggregation of α-Syn is a pivotal mechanism in Parkinson's disease (PD). Effectively maintaining α-Syn proteostasis involves both inhibiting its aggregation and promoting disaggregation. In this study, we developed a series of aromatic amide derivatives based on Rhein. Two of these compounds, 4,5-dihydroxy-N-(3-hydroxyphenyl)-9,10-dioxo-9,10-dihydroanthracene-2-carboxamide (a5) and 4,5-dihydroxy-N-(2-hydroxy-4-chlorophenyl)-9,10-dioxo-9,10-dihydroanthracene-2-carboxamide (a8), exhibited good binding affinities to α-Syn residues, demonstrating promising inhibitory activity against α-Syn aggregation in vitro, with low IC50 values (1.35 and 1.08 µM, respectivly). These inhibitors acted throughout the entire aggregation process by stabilizing α-Syn's conformation and preventing the formation of ß-sheet aggregates. They also effectively disassembled preformed α-Syn oligomers and fibrils. Preliminary mechanistic insights indicated that they bound to the specific domain within fibrils, inducing fibril instability, collapse, and the formation of smaller aggregates and monomeric α-Syn units. This research underscores the therapeutic potential of Rhein's aromatic amides in targeting α-Syn aggregation for PD treatment and suggests broader applications in managing and preventing neurodegenerative diseases.


Asunto(s)
Antracenos , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Antraquinonas/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/prevención & control , Enfermedad de Parkinson/metabolismo , Antracenos/química , Antracenos/farmacología
5.
Bioorg Med Chem ; 96: 117529, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976808

RESUMEN

This study focuses on the misfolding and aggregation of α-Syn as a central mechanism linking various pathological processes in PD. Maintaining α-Syn proteostasis through suitable inhibitors emerges as an effective approach to prevent PD. A more efficient strategy for PD treatment involves disintegrating neurotoxic oligomers and fibrils into normal functional α-Syn using inhibitors. To this end, a series of 4-arylidene curcumin derivatives were synthesized with a sheet-like conjugated skeleton and higher binding energies with α-Syn residues. Among these derivatives, three candidate compounds exhibited promising α-Syn aggregation inhibitory activities in vitro, with IC50 values as low as 0.61 µM. The inhibitory action extended throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation and preventing ß-sheets aggregation. Furthermore, the candidate compounds demonstrated effective disintegration capabilities against preformed α-Syn oligomers and fibrils. Initial mechanistic investigations indicated that the inhibitors may bind to a specific domain within the fibril, inducing fibril instability and subsequent collapse. This process resulted in the formation of a complex system of aggregates with smaller sizes and monomers. Overall, these findings provide valuable insights into the potential of 4-arylidene curcumin derivatives as therapeutic agents for targeting α-Syn aggregation in PD treatment.


Asunto(s)
Curcumina , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Curcumina/farmacología , Unión Proteica , Amiloide/metabolismo , Agregado de Proteínas
6.
Eur J Med Chem ; 249: 115122, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36680987

RESUMEN

Neurotoxic α-Syn fibers, the main components of Lewy bodies, play a key role in the development of PD characterized by a progressive loss of dopaminergic neurons. Here, we designed and synthesized the hybrids of polyphenolic/quinone acids. The candidate compounds showed high α-Syn aggregation inhibitory activities in vitro with IC50 down to 1.6 µM. The inhibition went through the aggregation process by stabilizing the conformation of α-Syn proteostasis and preventing ß-sheets aggregation, especially in the lag phase. Furthermore, the candidate drugs could disintegrate the preformed varisized aggregates into pony-size aggregates and functional monomers and continually inhibit the re-aggregation. The activities of anti-aggregation and aggregates depolymerization result in the reduction of inclusions in neuron cells. The candidate drugs also show high anti-oxidation and low cytotoxicity. They finally repair the damaged neurons in 6-OHDA-lesioned C57 mice and significantly improve PD-like symptoms of the PD model mice. The hybrids are promising molecules for PD prevention and therapy.© 2022 Elsevier Masson SAS. All rights reserved.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Caballos , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína , Cuerpos de Lewy , Neuronas , Benzoquinonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...